Какое число признают самым большим?

Какое оно — самое большое число?

Мир науки просто удивителен своими знаниями. Однако постигнуть их все не сможет даже самый гениальный в мире человек. Но стремиться к этому нужно. Именно поэтому в данной статье хочется разобраться, какое оно, самое большое число.

О системах

В первую очередь необходимо сказать о том, что в мире существует две системы именования чисел: американская и английская. В зависимости от этого одно и то же число может называться по-разному, хотя и иметь одно и то же значение. И в самом начале нужно разобраться именно с этими нюансами, дабы избежать неопределенности и путаницы.

Американская система

Интересным окажется тот факт, что данная система используется не только в Америке и Канаде, но и в России. К тому же она имеет и свое научное название: система именования чисел с короткой шкалой. Как же называются в данной системе большие числа? Так, секрет довольно-таки простой. В самом начале будет идти латинское порядковое числительное, после же просто добавится всем известный суффикс «-иллион». Интересным окажется следующий факт: в переводе с латинского языка число «миллион» можно перевести как «тысячища». Американской системе принадлежат следующие числа: триллион – это 10 12 , квинтиллион – 10 18 , октиллион – 10 27 и т. д. Несложно будет также разобраться, сколько же нулей записано в числе. Для этого нужно знать простую формулу: 3*х + 3 (где «х» в формуле – это латинское числительное).

Английская система

Однако, несмотря на простоту американской системы, в мире все же более распространена английская система, которая является системой названия чисел именно с длинной шкалой. С 1948 года ею пользуются в таких странах, как Франция, Великобритания, Испания, а также в странах – бывших колониях Англии и Испании. Построение чисел тут также довольно-таки простое: к латинскому обозначению добавляют суффикс «-иллион». Дальше же, если число в 1000 раз больше, добавляется уже суффикс «-иллиард». Как можно узнать количество спрятанных в числе нулей?

  1. Если число заканчивается на «-иллион», нужна будет формула 6*х + 3 («х» – это латинское числительное).
  2. Если число заканчивается на «-иллиард», надо будет формула 6*х + 6 (где «х», опять же, латинское числительное).

Примеры

На данном этапе для примера можно рассмотреть, как же будут называться одни и те же числа, однако в разной шкале.

Можно без проблем увидеть, что одно и то же название в разных системах обозначает разные числа. Например, триллион. Поэтому, рассматривая число, все же предварительно нужно узнать, согласно какой системе оно записано.

Внесистемные числа

Стоит сказать и о том, что, помимо системных, существуют также и внесистемные числа. Может, среди них затерялось самое большое число? Стоит в этом разобраться.

  1. Гугол. Это число десять в сотой степени, т. е. единица, за которой следует сто нулей (10 100 ). О данном числе впервые было сказано в далеком 1938 году ученым Эдвардом Каснером. Весьма интересный факт: всемирная поисковая система «Гугл» названа в честь довольно-таки большого на то время числа – гугол. А название ему придумал малолетний племянник Каснера.
  2. Асанкхейя. Это весьма интересное название, которое с санскрита переводится как «неисчислимый». Числовое значение ее – единица со 140 нулями – 10 140 . Интересным окажется следующий факт: это было известно людям еще в 100 году до н. э., о чем говорит запись в Джайна-сутре, известном буддийском трактате. Данное число считалось особенным, ведь было мнение, что столько же нужно космических циклов, чтобы достичь нирваны. Также на то время это число считалось самым большим.
  3. Гуголплекс. Это число придумано все тем же Эдвардом Каснером и его вышеупомянутым племянником. Числовое его обозначение – десять в десятой степени, которая, в свою очередь, состоит в сотой степени (т. е. десять в степени гуголплекс). Также ученый сказал, что таким образом можно получить настолько большое число, насколько хочется: гуголтетраплекс, гуголгексаплекс, гуголоктаплекс, гуголдекаплекс и т. д.
  4. Число Грэма – G. Это самое большое число, признано таковым в недалеком 1980 году Книгой рекордов Гиннеса. Оно существенно больше, нежели гуголплекс и его производные. А ученые и вовсе говорили о том, что вся Вселенная не в состоянии в себя вместить всю десятичную запись числа Грэма.
  5. Число Мозера, число Скьюза. Эти числа также считаются одними из самых больших и применяются они чаще всего при решении различных гипотез и теорем. А так как эти числа невозможно записать общепринятыми всеми законами, каждый ученый делает это по-своему.
Читать еще:  До и после: классическая ванная в светлых тонах

Последние разработки

Однако все же стоит сказать о том, что нет предела совершенству. И многие ученые считали и считают, что еще пока не найдено самое большое число. Ну и, конечно же, честь это сделать выпадет именно им. Над данным проектом длительное время работал американский ученый из Миссури, труды его увенчались успехом. 25 января 2012 года он нашел новое самое большое число в мире, которое состоит из семнадцати миллионов цифр (что является 49-м числом Мерсенна). Примечание: до этого времени самым большим считалось число, найденное компьютером в 2008 году, насчитывало оно 12 тысяч цифр и выглядело следующим образом: 2 43112609 – 1.

Не впервой

Стоит сказать о том, что это было подтверждено научными исследователями. Данное число прошло три уровня проверки тремя учеными на разных компьютерах, на что ушло целых 39 дней. Однако это не первые достижения в подобных поисках американского ученого. Ранее он уже открывал самые большие числа. Случалось это в 2005 и 2006 годах. В 2008 году компьютер прервал череду побед Кертиса Купера, однако он все же в 2012 году вернул себе пальму первенства и заслуженное звание первооткрывателя.

О системе

Как это все происходит, как ученые находят самые большие числа? Так, сегодня большинство работы за них делает компьютер. В данном же случае Купер использовал распределенные вычисления. Что это значит? Эти расчеты ведут программы, установленные на компьютерах пользователей Интернета, которые добровольно решили принять участие в исследовании. В рамках данного проекта было определено 14 чисел Мерсенна, названных так в честь французского математика (это простые числа, которые делятся только сами на себя и на единицу). В виде формулы это выглядит следующим образом: Mn = 2 n — 1 («n» в данной формуле – это натуральное число).

О бонусах

Может возникнуть логический вопрос: а что заставляет ученых работать в этом направлении? Так, это, конечно же, азарт и желание быть первооткрывателем. Однако и тут есть свои бонусы: за свое детище Кертис Купер получил денежный приз в размере 3 тысячи долларов. Но и это еще не все. Специальный Фонд Электронных Рубежей (аббревиатура: EFF) поощряет такие вот поиски и обещает незамедлительно наградить денежным призом в размере 150 и 250 тысяч долларов тех, кто предоставит на рассмотрение простые числа, состоящие из 100 миллионов и миллиарда чисел. Так можно не сомневаться, что в этом направлении сегодня работает огромное количество ученых по всему миру.

Простые выводы

Итак, какое самое большое число сегодня? На данный момент найдено оно американским ученым из университета Миссури Кертисом Купером, которое можно записать следующим образом: 2 57885161 – 1. При этом оно также является 48 числом французского математика Мерсенна. Но стоит сказать о том, что конца в этих поисках быть не может. И неудивительно, если через определенное время ученые нам предоставят на рассмотрение следующее новонайденное самое большое в мире число. Можно не сомневаться, что произойдет это в самые ближайшие сроки.

Самое большое число в мире, которое что-то обозначает

Число Грэма — самое большое число в мире, которое что-то обозначает. Это не единица с огромным количеством нулей. Мы не можем его себе представить. Но давайте по порядку.

Миллион — 1.000.000. Обозначается как 10 в 6 степени. Мы легко можем представить миллион чего-то: миллион рублей, миллион долларов и т.п..

Миллиард — 1.000.000.000 или тысяча миллионов. Обозначается 10 в 9 степени. Представить миллиард чего-то мы тоже можем: 7 миллиардов человек живёт на нашей планете, 100 миллиардов звёзд в млечном пути.

Триллион — 1.000.000.000.000. Обозначается 10 в 12 степени. Триллион рыб живёт в мировом океане.

Квадриллион — 1.000.000.000.000.000. Обозначается 10 в 15 степени. Квадриллион муравьёв живёт на нашей планете.

Квинтиллион — 1.000.000.000.000.000.000. Обозначается 10 в 18 степени. Именно столько кубометров воды есть на земле.

Но это только начало!

Секстиллион — 1.000.000.000.000.000.000.000. Обозначается 10 в 21 степени. Около секстиллиона звёзд мы можем наблюдать в видимой части космоса. Её называют сферой Хаббла. Статья о ней скоро появится (уже появилась) на канале.

Септиллион — 1.000.000.000.000.000.000.000.000. Обозначается 10 в 24 степени. Наша планета весит септиллион килограммов или секстиллион тонн.

Квинквавигинтиллион — 10 в 78 степени. Сто квинквавигинтиллионов — количество субатомных частиц в видимой вселенной.

Гугол — 10 в степени 100. Существует теория, что через гугол лет последняя чёрная дыра взорвётся и вселенная сожмётся до первоначального состояния. Также существует число гуголплекс — 10 в степени гугол, гуголплексплекс — 10 в степени гуголплекс и так далее, но у этих чисел нет никакого значения. Это просто цифры.

10 в 185 степени — объём видимой вселенной с точки зрения планковских величин. Это наиболее маленький объём, который человек может представить и вычислить. Планковская длина приблизительно равна 1,616229(38) умножить на 10 в -35 степени метров.

Читать еще:  Уникальные и функциональные песочные часы, своими руками изготовленные

10 в 500 степени — число возможных вселенных, если верить теории струн. Если хотите статью о ней — пишите в комментарии.

Числа Марсенна. Самое большое из них — 2 в степени 43.112.609 -1 (сорок три миллиона сто двенадцать тысяч шестьсот девять) — самое большое простое число, которое делится только на себя и на 1. Его длина — почти 13.000.000 цифр.

Число Скьюза. Записывается как 10 в степени 10 в степени 10 в степени 963. Обозначает верхний предел для математической задачи.

И вот наконец — число Грэма. Обозначает верхнюю границу решений задач с гиперкубом. Вспомним стрелочную нотацию Кнута, которая используется для обозначения больших числовых совокупностей. Суть метода состоит в добавлении вертикальных стрелок, вместо ступенчатых степеней. Вертикальную стрелку будем обозначать символом «|» Например 3|3=3 в степени 3 и равняется 27. 3||3=3 в степени 3 в степени 3 или 3 в степени 27 и равняется 7.625.597.484.987.

3|||3 это 3 с высотой столба степени 3 равной расстоянию от Земли до Марса. Количество троек в степени равняется 7.000.000.000.000. И заметьте, это не само число, а его степень! Математики обозначили его G1. Всего 5 троек из этой башни полностью покрывают гуголплекс, а первые 10 сантиметров ставят в тупик все существующие на Земле компьютеры. Дальше пустота и неведение. Далее идёт число G2, где количество стрелок равняется G1. Далее идёт G3, где количество стрелок равняется G2 и так далее. Всего таких чисел 64. G64 это и есть число Грэма. Записать его где либо невозможно, поэтому записывают формулой: G=f^64(4), где f(n)=3|^n3. (значок «^» обозначает степень: 1.000.000=10^6). Подсчитывать это бессмысленно. Число Грэма не поместится в тех самых 10 в степени 500 вселенных, даже если пронумеровать каждую частицу! Но мы всё же кое что знаем о нём. Вот последние 10 цифр этого числа: 2464195387. Первые цифры не знает никто. Возможно, через тысячи или десятки тысяч лет человечество всё-таки сможет его высчитать и оно станет элементарным и банальным.

Подписывайтесь на канал ставьте лайки, делитесь своим мнение в комментариях.

Самое большое число в мире

Считается, что концепция чисел впервые возникла, когда доисторические люди начали использовать свои пальцы для подсчета чего-либо. С тех пор человечество прошло долгий путь. Теперь мы используем калькуляторы и компьютеры для подсчета самых больших чисел. И даже появились названия для чисел, которые настолько велики, что их с трудом можно представить.

Бесконечность счетных чисел

Казалось бы, ответ на вопрос о том, каково самое большое число в математике — очень прост. Бесконечность, верно? Но это не совсем правильно. Ведь бесконечность — вовсе не число, а концепция. Идея.

Бесконечность (infinitum) — это понятие, которое в переводе с латинского означает «без границ». Определение бесконечности в математике гласит, что независимо от того, насколько велико число, вы всегда можете добавить к нему 1, и оно станет больше.

Поэтому, строго говоря, не существует такого понятия, как самое большое число в мире. Можно лишь назвать наибольшее число, которому дали конкретное название.

Вот некоторые наиболее известные названия больших чисел:

Как называется самое большое простое число

Простое число — то, которое делится только на себя и на единицу. В конце 2018 года американец Патрик Лярош представил научному миру самое большое простое число.

  • Длина его — 24 862 048 символов. Для сравнения: в эпохальном произведении Л.Н. Толстого «Война и мир» около 6-7 миллионов символов, если учитывать знаки препинания и пробелы.
  • Это число можно записать следующим образом: 2 82589933 -1
  • А читается оно так: два в степени 82589933 минус один.
  • Существует целый онлайн-проект GIMPS, нацеленный как раз на поиск самых больших простых чисел. В нем принимают участие математики из разных стран. Поэтому новые рекордсмены появляются часто. Работают ученые, что называется, не за страх, а за деньги. Ведь тому, кто откроет следующее наибольшее простое число Мерсенна достанется 3000 долларов.

Какое самое большое число в мире

В 1980 году в Книгу рекордов Гиннеса вошло число Грэма (оно же G64 или G), названное в честь американского математика Рональда Грэма. Оно является наибольшим числом, которое когда-либо использовалось в важном математическом доказательстве. Речь идет про теорию Франка Рамсея.

Кратко об этой теории: представим себе N-мерный куб, его вершины в случайном порядке соединены красными или синими отрезками-линиями. А наша задача — понять, до какого значения N возможно (если по-разному закрашивать ребра куба), избежать ситуации, при которой одна плоскость в кубе будет окрашена одним цветом. То есть у нас не должен получиться одноцветный «конвертик».

Математики позакрашивали кубик и так и эдак, получилось, что до шестимерного куба можно исхитриться и сделать, чтобы линии одного цвета, соединяющие четыре вершины, не лежали в одной плоскости. А вот с семимерным, как выяснили Грэм и Ротшильд, такой фокус уже не провернешь. И с восьмимерным. И… «и так далее», которое, впрочем, не бесконечно, а заканчивается фантастически гигантским числом. Вот его-то и именуют числом Грэма. Кстати, в настоящее время решение Грэма и Ротшильда устарело. Математики выяснили, что 6-7-8-9-10-11-12-мерные кубы все же можно покрасить без «конвертов». Но где-то в промежутке между 13 и числом Грэма гарантированно есть число выше которого «конверты» в любом случае будут.

Читать еще:  Самый вкусный минтай с овощами в духовке

Число Грэма получило всемирное признание в 1977 году, когда известный популяризатор науки Мартин Гарднер написал об этом в Scientific American.

И хотя с тех пор в математической науке были и другие кандидаты на титул самого большого числа, «детище» Грэма является самым распиаренным и общеизвестным. И если вы слышали про «гугольное семейство»:

  • гугол — 10 100 ;
    Или: 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
  • гуголплекс — 10 гугол ,

то знайте, что этими числами в математике лишь «разминаются», а число Грэма в немыслимое количество раз больше, чем они. И даже больше, чем число Скьюза, находящееся между 10 19 и 1,3971672·10 316 и приблизительно равное e 727,951336108 .

Любопытно, что придумав гугол американский математик Эдвард Казнер хотел показать студентам разницу между невероятно большим числом и бесконечностью. Тогда число Грэма может просто «взорвать мозг».

Возможно ли представить и записать число за гранью понимания

Математики не смогут назвать вам точное количество цифр в числе Грэма, не говоря уже о том, чтобы досчитать до него. Известны лишь последние 50 цифр самого большого числа в мире — это …03222348723967018485186439059104575627262464195387.

А вот цифры, с которых начинается G64 неизвестны, и вряд ли когда-либо будут.

Давайте сравним трех монстров: гугол, гуголплекс и число Грэма.

  • Гугол — это количество песчинок, которые могут поместиться во вселенной, умноженное на 10 миллиардов. Итак, представьте себе вселенную, заполненную мелкими песчинками — на десятки миллиардов световых лет над Землей, под ней, перед ней, позади нее — бесконечный песок.

Теперь представьте, что в какой-то момент вы берете одну песчинку, чтобы рассмотреть ее под мощным микроскопом. И видите, что на самом деле это не единственное зерно, а 10 миллиардов микроскопических зерен, а все вместе они размером с песчинку. Если бы это было так для каждой отдельной песчинки в этой гипотетической вселенной, то общее количество этих микроскопических зерен было бы гуголом.

  • Для количественной оценки гуголплекса астроном и астрофизик Карл Саган привел пример заполнения всего объема наблюдаемой вселенной мелкими частицами пыли размером приблизительно 1,5 микрометра. Исходя из этого, общее количество различных комбинаций, в которых эти частицы могут быть расположены, будет равно примерно одному гуголплексу.
  • А теперь представим, что гуголплекс — это даже не песчинка, а крохотная точка, которую можно рассмотреть лишь в самый мощный микроскоп. И у нас вся вселенная заполнена такими крохотными точками. Так вот, даже это не идет ни в какое сравнение с числом Грэма. Но что, если мы хотим использовать все пространство наблюдаемой вселенной для его записи (предположим, что запись каждой цифры занимает как минимум объём Планка)? Увы, у нас это не выйдет! Но всегда можно пойти другим путем.

Как записать G64 с помощью метода Кнута

В 1976 году американский ученый Дональд Кнут предложил понятие сверхстепеней или нотацию Кнута. Это метод, позволяющий при помощи стрелочек, направленных вверх, записывать очень большие числа. Возведение в степень обозначается одной стрелкой вверх: ↑.

Вот как выглядит эта нотация: a ↑ b = ab = a × a × a × …, и так b раз.

  • Например 3↑3 = 3³.
  • Гугол записывается так 10↑10↑2.
  • А гуголплекс — 10↑10↑10↑2

Важной особенностью стрелок вверх является то, что они растут очень быстро. Экспонентация растет гораздо быстрее, чем умножение. 2 × 10 — это всего лишь 20, но 2↑10 = 1024. Таким же образом, каждый новый уровень стрелок растет намного быстрее, чем предыдущий уровень.

Если мысленно представить себе степенную башню из троек 3↑↑↑4 то получится конструкция, размером от Земли до Марса. А ведь мы еще даже не дошли до «нижней ступеньки», ведущей нас к числу Грэма.

Мы можем описать число Грэма огромным набором этих стрелок вверх.

Проще всего думать об этом как об итерационном процессе. Мы начинаем снизу с g 1 = 3 ↑↑↑↑ 3, а затем создаем вторую строку (назовем ее g 2) с g 1 стрелками между тройками.

Тогда g 3 — это две тройки, разделенные g 2 стрелками вверх и так далее, пока g 64 с g 63 стрелками между тройками не будет числом Грэма.

Если выбрать продолжительность жизни, равную числу Грэма вместо бессмертия, то результат будет практически одинаков. Даже если предположить, что условия во Вселенной, в Солнечной системе и на Земле вечно останутся неизменными, человеческий мозг никак не мог бы выдержать столь длинный промежуток времени без пагубных изменений.

Источники:

http://www.syl.ru/article/149169/mod_kakoe-ono—samoe-bolshoe-chislo

http://zen.yandex.ru/media/id/5bd804fea6560100aaad6444/5c5d4c0a2e6eb000ad30fd42

http://basetop.ru/samoe-bolshoe-chislo-v-mire/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector
×
×
×
×